
J
H
E
P
0
1
(
2
0
0
8
)
0
5
8

Published by Institute of Physics Publishing for SISSA

Received: December 14, 2007

Accepted: January 14, 2008

Published: January 28, 2008

Moduli stabilisation versus chirality for MSSM like

type IIB orientifolds

Ralph Blumenhagen, Sebastian Moster and Erik Plauschinn

Max-Planck-Institut für Physik,
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the large volume scenario, we work out the geometry of the swiss-cheese type Calabi-
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1. Introduction

It is the main goal of string phenomenology to find realistic string models which are predic-

tive (in the weak sense1) and which, for a fixed background, fix dynamically all low energy

parameters. Indeed, it would be an important advance and a proof of principle to find

a globally consistent string compactification which contains and combines all the various

mechanisms of moduli stabilisation and D-brane model building techniques leading to the

MSSM localised on some (intersecting) D-branes and leading to a predictive framework for

cosmology. This means it would allow us to precisely compute all MSSM and cosmological

parameters from the underlying dynamically stabilised string model.

In recent years some progress has been made towards actually achieving this goal in

that new ways of fixing moduli in string compactifications have been found (see [1 – 8] for

1We are not discussing here problems related to the plethora of string models (the string landscape) and

its consequences for the predictivity of string theory.
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reviews). The most often discussed cases are Type IIB orientifolds, where a combination

of background fluxes [9] and non-perturbative terms were argued to allow to fix all closed

string moduli [10]. Here the complex structure moduli and the dilaton are stabilised by

three-form fluxes and the Kähler moduli by non-perturbative terms arising from D3-brane

instantons and/or gaugino condensation on D7-branes (for a systematic analysis see for

instance [11 – 15]).2

Quite remarkably, generalising the KKLT scenario, phenomenologically appealing

models have been found, for which in a non-supersymmetric minimum of the scalar po-

tential the overall volume V of the Calabi-Yau manifold is fixed at a very large value like

for instance V ≃ 1015, where α′-corrections to the Kähler potential compete with non-

perturbative contributions to the superpotential [16]. The Kähler moduli, on whose associ-

ated cycles the euclidean D3-brane instantons are wrapped, are fixed by non-perturbative

contributions to the superpotential at small volume, τ ≃ log(V).

These models have been called large volume compactifications and many of their low

energy features have been worked out, including a computation of supersymmetry breaking

soft terms [17, 18] and its collider signatures [19]. We think it is fair to say that such an

investigation has set a new standard for doing string phenomenology.

Let us point out that the main implicit assumption made in the KKLT and large

volume scenarios was that it is a valid procedure to split the construction of such string

models into two steps. The first one is to fix all moduli by a combination of fluxes and

non-perturbative effects. After that has been achieved, the second step is to introduce

the module of the MSSM on some intersecting respectively magnetised D7-branes. On

a phenomenological level this might be a fair attempt. It is the aim of this paper to

investigate more closely, whether the conditions appearing in string theory justify such a

procedure. For concreteness and because of their attractive phenomenological properties,

in this paper we will mainly discuss the large volume scenario but would like to stress that

all the structure and constraints we find directly carry over to other constructions including

the KKLT scenario [10].

Essentially generalising the arguments of [20 – 23], in this paper we would like to em-

phasise that there is a fundamental problem when combining a chiral MSSM like module

with the moduli stabilisation module. After reviewing the main ingredients of the large

volume scenario in section 2, we will point out two general features which a chiral D7-brane

sector introduces:

• It leads to the generation of a D-term potential, which appears at lower order in the

1/V expansion of the scalar potential. Therefore, there is the danger of destabilising

the large volume minimum.

• On the intersection of the D7-branes with the E3-brane instantons extra charged

chiral fermionic zero modes can appear, spoiling the generation of an uncharged

superpotential.

2In the remainder of this paper we will mainly consider D3-brane instantons. However, let us already

mention that the results we obtain carry over to gaugino condensation on D7-branes.
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We will argue that, as studied for instance in [21, 22, 24], a non-perturbative super-

potential including matter fields does not resolve the second problem, as in our bottom-

up approach we do not want to give VEVs to MSSM matter fields. This is in contrast

to [21, 25, 22, 24], where these matter field superpotentials were used in the hidden sector

for uplifting the AdS minimum to de Sitter. There, no direct phenomenological constraints

arise for the VEVs of the hidden sector matter fields.

As we will show, due to the chirality of the D7-brane sector, in our MSSM case the D7-

branes and the E3-branes should better wrap in some sense orthogonal four-cycles. This

means that not all the sizes of the D7-branes are fixable by instanton induced F-terms.

However, it is precisely the sizes of these cycles on which some of the low-energy MSSM

parameters depend. Therefore, by this effect we seem to loose part of the very predictive

power of the models [17 – 19].

The combination of both aspects mentioned in the previous paragraph provides a

natural solution to the problem of fixing all Kähler moduli for an MSSM like model. Non-

perturbative effects fix part of the Kähler moduli except some of the ones controlling the

size of the MSSM branes. These latter are fixed by the vanishing of the D-term potential.

Since it is a D-term, there could also be charged matter contributions. Again, by requiring

not to break the MSSM gauge symmetry already at the high scale they should better have

vanishing vacuum expectation values. Note that, for the uplifting physics in the hidden

sector this argument does not apply.

Furthermore, we find that in the case of multiple contributions to the instanton gener-

ated superpotential, there are additional terms potentially destabilising the large volume

minimum found in [16, 17] for the single instanton case. However, requiring that the

four-cycles the instantons wrap do not intersect leads to the familiar form of the scalar

potential [16, 17]. We also allow for more general rigid four-cycles, homologically described

by linear combinations of the basic blow-up cycles which can be understood as rigid, singu-

lar configurations of the basic ones. In this case, the F-terms also take a slightly different

form than described in [16, 17].

In the second part of this paper, we will investigate some of these aspects for the swiss

cheese type Calabi-Yau manifold defined via the resolution of the singular hypersurface

in a weighted projective space P[1,3,3,3,5][15](3,75).
3 Working out the toric geometry of the

resolution, we will show that this space contains rigid four-cycles, on which wrapped E3-

instantons have the right zero mode structure to give a contribution to the uncharged

superpotential. Introducing also a set of chirally intersecting and magnetised D7-branes,

we find that, for vanishing VEVs for charged matter fields, the combination of F- and

D-terms fixes the four-cycles at the boundary of the Kähler cone, where however the sizes

of the instantons and D7-branes remain finite and of the same scale. For non-vanishing

VEVs of some of the matter fields the situation gets even improved.

3In appendix B, we will also provide the geometric data for a second new swiss-cheese Calabi-Yau,

namely the resolution of P[1,1,3,10,15][30](5,251).
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2. Type IIB orientifolds

The best understood moduli stabilisation techniques have been developed for the pertur-

bative Type IIB string, which is mainly related to the fact that turning on background

three-form fluxes only mildly changes the background geometry by introducing a warp fac-

tor [9]. As we will explain at the example of the large volume models of [16, 17], the task

of combining moduli stabilisation with an MSSM type gauge sector is non-trivial and more

involved than just combining these two separate modules.

2.1 Large volume scenario

In order to explain our arguments, we will use as a prototype example the large volume

scenario (LVS) of closed string moduli stabilisation in Type IIB orientifold models [16].

We consider Type IIB orientifolds of a Calabi-Yau manifold X with in general O7- and

O3-planes. The complex structure moduli U are encoded in the holomorphic three-form

Ω3 of X and the axio-dilaton field reads

S = e−φ + i C0 , (2.1)

where φ is the dilaton and C0 is the Ramond-Ramond (R-R) zero-form. These moduli are

usually fixed by the Gukov-Vafa-Witten superpotential [26]

WGVW =

∫

X
G3 ∧ Ω3 , (2.2)

arising from three form flux G3 = F3 + iS H3 supported on the three-cycles of the Calabi-

Yau manifold. As for the KKLT scenario [10], it is assumed that the flux vacuum breaks

supersymmetry, where the value of the superpotential in the minimum is denoted by W0.

Concerning the stabilisation of the Kähler moduli, the tree-level no-scale structure

of the flux induced scalar potential is broken by both the leading order perturbative α′-

corrections to the tree-level Kähler potential and by E3-brane instanton corrections to the

superpotential. The Kähler potential including the α′-corrections reads [27]

K = −2 ln

(
V̂ +

ξ

2 g
3/2
s

)
− ln

(
S + S

)
− ln

(
−i

∫

X
Ω ∧ Ω

)
, (2.3)

where gs denotes the string coupling and we have set the supergravity scale as MPl = 1.

The string-frame volume V of the Calabi-Yau manifold is expressed in the following way

V =
1

3!

∫

X
J ∧ J ∧ J =

1

6
Kijk ti tj tk , (2.4)

where we have expanded the Kähler form J in some basis {ωi} of H1,1(X , Z) as J =
∑

i t
iωi.

The Einstein-frame volume appearing in (2.3) is denoted by a hat. Furthermore, Kijk

denotes the triple intersection number in the chosen basis. The α′-corrections are encoded

in ξ in terms of the Euler number χ of the internal manifold X

ξ = −ζ(3)χ
(
X
)

2 (2π)3
. (2.5)
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In addition to the perturbative corrections, one also takes into account E3-brane instantons

in order to break the no-scale structure of the scalar potential. These instantons generate

terms in the superpotential of the following form [28]

Wnp = A(S, U) e−Sinst = A(S, U) e−
P

i aiTi . (2.6)

The Kähler moduli Ti of Type IIB orientifolds with O3- and O7-planes are a particular

combination of the Kähler form J and of the R-R four-form C4

Ti = e−φ 1

2

∫

Di

J ∧ J + i

∫

Di

C4 = e−φ τi + i ρi , (2.7)

where {Di} ⊂ H4(X , Z) with i = 1, . . . , h1,1(X ) forms a basis of four-cycles on the internal

manifold. The τi denote the volume of Di and ρi is the associated axion. For ease of

notation, we will express all geometric quantities like V and τ in string-frame. However,

in the supergravity formulas, they have to appear in Einstein-frame which is achieved by

substituting J → e−φ/2J . As already indicated above, the resulting quantities in this frame

will be denoted by a hat, i.e. V̂ and τ̂ .

For manifolds where the overall volume V is controlled by one large four-cycle, it was

shown that such compactifications admit an interesting minimum of the resulting scalar

potential [16]. More precisely, the minimum arises at exponentially large volumes, if V can

be written as

V ∼ τ
3
2
b −

h1,1−1∑

s=1

τ
3
2
s , (2.8)

where τb denotes the volume of the big four-cycle and τs measure the sizes of (small) holes

in this geometry. Thus, these models have a “swiss-cheese” like structure [17, 29, 30].

The standard example primarily studied in the literature is the Calabi-Yau manifold

P[1,1,1,6,9][18] which has a codimension three Z3-singularity [11, 31, 32]. Its resolution

introduces a second Kähler modulus Ts so that the volume becomes

V =
1

9
√

2

(
τ

3
2
b − τ

3
2
s

)
. (2.9)

Since the minimum of the scalar potential is expected to occur at large values of V, the

leading order instanton contribution Wnp = As e−asTs is given by an E3-brane instanton

along the small cycle. Furthermore, because V ≫ 1, one can perform an expansion of the

potential VF in powers of 1/V [16]

VF = eK
(
Gab DaW DbW − 3

∣∣W
∣∣2
)

= λ
(asAs)

2
√

τ̂s e−2asτ̂s

V̂
− µ

as

∣∣AsW0

∣∣ τ̂s e−asτ̂s

V̂2
+ ν

ξ
∣∣W0

∣∣2

g
3/2
s V̂3

+ . . . . (2.10)

Here λ, µ, ν are positive numerical constants and as takes the value 2π. The complex

structure moduli U and the axio-dilation are assumed to be stabilised via DUW = DSW =

– 5 –
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0 and sub-leading powers of 1/V̂ have been neglected. For ξ > 0 this potential then has a

minimum which stabilises V̂ ≃ τ̂
3/2
b at large values and τ̂s at τ̂s ≃ log(V̂). Introducing the

mass scale MPl, in this scenario one obtains the relation between the string and the Planck

scale as Ms ≃ MPl/
√
V and the relation M 3

2
≃ MPl W0/V for the gravitino mass.

In subsequent papers [17, 33, 18, 34, 19], many phenomenologically appealing features

of this scenario have been found, which at the moment make them very attractive can-

didates for string phenomenology. Moreover, it has been shown in [35, 36] that due to a

second no-scale structure string loop corrections to the Kähler potential are sub-dominant.

To prepare our following discussion let us mention two important points:

• In order for an E3-brane instanton to actually generate a superpotential term like

in (2.6), the zero mode structure must be of a special nature. For the example

P[1,1,1,6,9][18] it was shown that the small divisor τs has an F-theory lift to a six-

dimensional divisor in the Calabi-Yau fourfold with χ(D,O) = 1. By the zero mode

criterion derived in [28], an instanton along this cycle thus contributes to the super-

potential.

• In all the phenomenological analysis of the model above, the MSSM D7-branes were

assumed to also wrap the small cycle τs. Therefore, the implicit philosophy was,

that one first freezes all closed string moduli by fluxes and instantons, and then

adds an MSSM like D7-brane sector and computes the soft terms depending on the

non-vanishing auxiliary F-fields via the usual supergravity formulas [37].

This latter practice is surely justified in a purely phenomenological approach, but,

given the undoubted success of this scenario, we would like to look more closely whether

such a procedure is indeed justified from the structure of string theory. Of course, there are

apparent stringy consistency conditions, which are not shown to be really satisfied in this

concrete model, like for instance tadpole cancellation conditions and the vanishing of the

Freed-Witten anomalies [38] appearing if both H3-form flux and D-branes are present. If

these are violated then the theory would be inconsistent right away as in general anomalies

would not be cancelled.4 What we are after, however, is more subtle and relates to the

coexistence of a chiral D-brane sector and a moduli freezing instanton sector.

2.2 Orientifolds with intersecting D7-branes

Let us now collect the general rules for computing the massless spectrum and the tadpole

cancellation conditions for Type IIB orientifolds with O7- and O3-planes. As before, we are

compactifying the Type IIB string on a Calabi-Yau three-fold X but now we also specify

an orientifold projection. It is of the form Ωσ(−1)FL where Ω is the world-sheet parity

operator, σ is an involution and FL denotes the left-moving fermion number. Then, we

introduce stacks of D7a-branes wrapping four-cycles Da in the Calabi-Yau manifold and

4In a T-dual Type IIA model, where the Standard Model moduli can also be fixed by fluxes, it would

not only be the interplay between intersecting D6-branes and E2-instantons but also the generalised Freed-

Witten [39, 23] anomalies governing the coexistence between the chiral gauge sector and the moduli stabil-

isation sector.

– 6 –
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Representation Multiplicity

(Na, Nb) Iab

(Na, Nb) Ia′b

Aa
1
2(Ia′a + 2IO7a)

Sa
1
2(Ia′a − 2IO7a)

Table 1: Chiral spectrum for intersecting D7-branes.

carrying gauge bundles Va. Here we consider only orientifold projections leaving all four-

cycles invariant, i.e. h−
1,1 = 0 and h+

1,1 = h1,1. This implies that the orientifold projection

acts as

Ω3 → −Ω3 , Da → Da , Va → V ∨
a , (2.11)

where Ω3 denotes the holomorphic three-form of the Calabi-Yau. The fixed point locus of

the involution σ defines a divisor DO7 around which the orientifold plane is wrapped. Note

that on the O7-plane there is no gauge bundle so that formally we choose VO7 = O.

The chiral massless spectrum arising from open strings stretched between two D7-

branes wrapping two four-cycles Da and Db and carrying gauge bundles Va and Vb is

determined by [40, 41]

Iab =

∫

Da∩Db

(
c1(Va) − c1(Vb)

)
=

∫

X

(
c1(Va) − c1(Vb)

)
∧ [Da] ∧ [Db] . (2.12)

Here, the two-forms [Da,b] denote the Poincaré duals to the four-cycles Da,b and c1(Va,b)

denote the first Chern classes of Va,b. The rules for computing the chiral spectrum are

summarised in table 1 where a prime denotes the orientifold image.

Having a chiral spectrum implies that one has to worry about anomalies. However,

satisfying the tadpole cancellation condition for the D7-branes ensures that the spectrum

is free of non-abelian gauge anomalies. For the present case it reads

∑

a

Na Da = 4DO7 , (2.13)

where the sum is over all D7a-branes. Note that we have presented the tadpole constraint

on the orientifold quotient. In the ambient Calabi-Yau it is multiplied by a factor of two.

In addition, there is the D3-brane tadpole which, again on the quotient, takes the following

form

ND3 + Nflux −
∑

a

Na

∫

Da

ch2

(
Va

)
=

NO3

4
+
∑

a

Na

24

∫

Da

c2

(
TDa

)
+

1

12

∫

DO7

c2

(
TO7

)
, (2.14)

where TD denotes the tangential bundle of the divisor D and c2 stands for the second

Chern class while ch2 denotes the second Chern character. Note that for a smooth divisor

D the integral of the second Chern class over D is just the Euler-characteristic χ(D).

– 7 –
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In the F-theory lift of such a model to a Calabi-Yau fourfold Y, the right hand side

of equation (2.14) is equal to χ(Y)/24 [42]. For the simple solution of (2.13) with four

D7-branes with trivial line bundle placed right on top of the O7-plane we have

ND3 + Nflux =
NO3

4
+

χ(DO7)

4
. (2.15)

The gauge group in this case is SO(8). For this special solution, the Calabi-Yau four-fold is

given by the Z2 orbifold Y = (X ×T
2)/Z2 where the Z2 acts as the holomorphic involution

σ on the CY three-fold X and on the torus T
2 as z → −z. If we blow-up the Z2 singularities

by gluing in P
1s and take the four fixed points on T 2 into account, the Euler-characteristic

of Y is computed as

χ
(
Y
)

=
1

2

(
χ
(
X × T

2
)
− 4 χ

(
DO7

)
− 4NO3

)
+ 4χ

(
P

1
)
χ
(
DO7

)
+ 4χ

(
P

1
)
NO3

= 24

(
NO3

4
+

χ(DO7)

4

)
. (2.16)

For other non-trivial and in particular chiral solutions to the tadpole cancellation condi-

tions, the F-theory four-fold is not explicitly known.5

3. Instantons and chirality

In this section, we are going to investigate the aforementioned interplay between a chiral

theory realised by intersecting and magnetised D7-branes and the E3-brane instantons.

More specifically, we assume that some version of the MSSM can be described by a config-

uration of D7-branes wrapping four-cycles in the Calabi-Yau manifold.

3.1 The chiral D7-brane sector

The formula for the chiral spectrum between two D7-branes (2.12) implies that in order to

obtain chirality, it is necessary that at least one of the D7-branes carries a non-trivial U(N)

gauge bundle. For our purposes, it is not crucial to have a complete MSSM sector, but

we will just take one of the main features of the Standard Model, namely its chirality, and

assume the minimal chiral configuration. We consider K stacks of Na D7-branes wrapping

the cycle Da with vector bundle Va. However, in order to avoid stability issues of higher

rank vector bundles and vector bundle moduli, from now on we just choose line bundles

La on the D7-branes.

For such chiral intersecting D-brane models, it is known that generically they contain

anomalous U(1) gauge symmetries. For D7-branes, these anomalies are cancelled by the

four-dimensional axions

ρa =

∫

Da

C4 (3.1)

5Note that it is somewhat misleading to do Type IIB model building with the fourfold base F11, as here

implicitly the four-cycles wrapped by the D7-branes have already been fixed and the only freedom is to

turn on gauge bundles on them.

– 8 –
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arising from the dimensional reduction of the R-R four-form along the four-cycle Da. In-

deed, the Chern-Simons action for a D7-brane on a four-cycle Da contains terms of the

form

SCS ∼
∫

R1,3×Da

C4 ∧ F ∧ F , (3.2)

which give rise to the following Green-Schwarz couplings. First, there is the mass-term for

the gauge field obtained by choosing two legs of C4 along Da and F to be the curvature

of the internal line bundle L. Second, the ρ − A2 vertex arises from choosing all four legs

of C4 along Da. Such a gauging of the axionic shift symmetry leads to a Fayet-Iliopoulos

term for a U(1), which in our case turns out to be

ξa =
1

V̂

∫

X
c1

(
La

)
∧
[
Da

]
∧ Ĵ . (3.3)

Therefore, a chiral D7-brane sector necessarily gives rise to a D-term potential VD of the

following form

VD =

K∑

a=1

1

Re (fa)

(
∑

i

Q
(a)
i

∣∣φi

∣∣2 − ξa

)2

, (3.4)

where MPl = 1 and Q
(a)
i are the U(1)a charges of the canonically normalised matter

fields φi. Furthermore, Re (fa) denotes the real part of the gauge kinetic function for the

corresponding D-brane. It is effectively the DBI action of a supersymmetric E3-brane

instanton along the cycle Da and reads

Re (fa) = e−φ 1

2

∫

Da

J ∧ J − e−φ

∫

Da

ch2

(
B + La

)
= τ̂a − Re

(
S
)

ca . (3.5)

Here, ca denotes the integrated second Chern character of B + La on the respective D7-

brane and τ̂a is the (Einstein-frame) volume of Da.

Note that this D-term is generically only of order V−2 in the volume expansion (2.10) so

that an additional (natural) D-term supersymmetry breaking destabilises the large volume

minimum found at order V−3. Therefore, for preserving the large volume minimum we will

require that the D-term vanishes, i.e. VD = 0. The other option is to allow for significant

fine tuning and use this D-term in a hidden sector for up-lifting the AdS minimum to a

small and positive vacuum energy [43, 44, 39, 21].

3.2 E3-brane instantons

We are now going to investigate E3-brane instanton effects in more detail. In particular,

for the instantons to generate a contribution to the superpotential, the zero mode structure

has to be of a certain type.

Note that for orientifold models where the D7-branes do not lie right on top of the O7-

planes, i.e. for generally intersecting D-branes with non-trivial gauge bundles, the F-theory

lift is not known and the computation of χ(D,O) for the uplifted E3-brane divisor cannot

– 9 –
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be performed. It is therefore much more convenient to perform the zero mode analysis

directly in the Type IIB orientifold model, where we can rely on recent work on space-time

instanton effects in D-brane models [45 – 52]. We will also comment on the case that we

freeze the Kähler moduli by gaugino condensates on a stack of Nc D7-branes wrapping a

four-cycle DG.

• For contributing to the superpotential, a single (isolated) instanton must wrap a

four-cycle invariant under the orientifold projection and must carry an O(1) gauge

symmetry [53 – 55]. In the case of h−
1,1(X ) = 0, this implies that the instanton carries

a trivial gauge bundle.

• Next, we have to worry about deformation zero modes of the E3-instanton. These

are clearly absent, if the E3-brane wrapping the four-dimensional divisor D does not

have any further moduli. That is, there are no Wilson lines counted by H1(D,O)

or transverse deformations counted by H2(D,O). If this sufficient condition is not

satisfied, then fluxes or curvature on the moduli space might soak up some of the

zero modes, but a more careful analysis is necessary [51, 56]. Similarly, for gaugino

condensation many adjoint matter fields counted by H i(DG,O) with i = 1, 2 spoil

asymptotic freedom of the gauge theory on the D7G-branes.

• If, as in our case, there are additional space-time filling D7-branes present, there can

appear extra charged fermionic zero modes from the intersection of the E3-instanton

and the D7-branes [46]. The chiral index of these fermionic zero modes is

Za = Na

∫

Da∩DE3

c1

(
La

)
= Na

∫

X
c1

(
La

)
∧
[
Da

]
∧
[
DE3

]
. (3.6)

In order to soak up these additional fermionic zero modes, one has to pull down

charged matter fields in the instanton computation. The pure exponential term as

in (2.6) is then multiplied by products of charged matter superfields Φi as [46]

Wstring ∼
[∏

i

Φi

]
e−Sinst . (3.7)

Note, that such instantons are not gauge instantons and therefore often called stringy

or exotic instantons.

• For the special case when the E3-instanton lies right on top of the D7-branes,6 it is

possible to have non-trivial gauge bundles on the instanton. It can then be regarded as

a gauge instanton from the perspective of the D7-brane gauge theory and additional

bosonic and non-chiral fermionic zero modes arise parametrising the ADHM instanton

super moduli space [45, 59, 53, 54]. The effect of such instantons is of the same nature

as gaugino condensates for the gauge theory on stacks of D7G-branes, so that we can

discuss them together. In order to soak up the ADHM zero modes one needs extra

6Note that in [57, 58] it was shown that for an instanton on top of a single D-brane also a superpotential

of the form (3.7) can be generated.
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non-chiral (with respect to the U(NG) gauge group) matter zero modes from the

intersection of the E3-instanton with the other D7-branes [35, 59]. If we end up

with an SU(Nc) gauge group with effectively Nf flavours, then for Nf < Nc the

contribution to the superpotential is

Wgauge ∼
1

detff ′

[
Φ̃ c

f Φc f ′

] e−Sinst . (3.8)

In writing this, it is assumed that we are on the Higgs branch, where the determi-

nant is non-vanishing and so the flavour gauge group is completely broken. Such a

configuration is not part of the MSSM and therefore the instanton respectively the

DG branes should better not have any intersection with the D-branes supporting the

MSSM.

3.3 Moduli stabilisation for chiral models

We will now argue that given the structure and constraints from the previous discussion,

for chiral orientifolds not all Kähler moduli can be frozen by instantons. In particular,

some of the moduli controlling the size of the chiral D7-brane sector are left unfixed by the

E3-brane instantons.

Let us first summarise the possible matter fields which can be present in the configu-

rations we are considering.

• We assume that the chiral MSSM like matter fields, denoted as ΦSM, are part of

the chiral matter spectrum arising on a set of intersecting D7-branes carrying initial

gauge group G =
∏K

a=1 U(Na). Typical examples discussed in the literature are

G = U(5) × U(1), G = U(4) × U(2) × U(2) or G = U(3) × U(2) × U(1) × U(1).

• There can also be additional (chiral) fields, which also arise from the same set of

intersecting D7-branes leading to so-called exotic matter fields. There can exist exotic

matter fields transforming in non-trivial representation of the non-abelian part of the

MSSM gauge group. These are denoted as Φexo.

• However, since in D-brane models we genuinely have these extra U(1) gauge factors,

there might be fields which are not charged under the MSSM gauge group SU(3) ×
SU(2) × U(1)Y but carry non-trivial charges with respect to U(1)s orthogonal to

U(1)Y . These we denote as Φabel.

• In addition there can in principle be further hidden sector matter fields ΦH, whose

D-terms and F-terms however do not mix with the Standard Model ones. Therefore,

we will not focus on those in the following. However, this sector might be important

for the eventual uplift of the AdS minimum to de Sitter with small cosmological

constant.

Consider now an E3-instanton wrapping a four-cycle which gives rise to extra Standard

Model charged zero modes. These can either be chiral fermionic zero modes coming from
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stringy instantons or non-chiral zero modes from gauge instantons. To soak up all these

zero modes, the superpotential coupling must contain products of the Standard Model

Matter fields ΦSM and, since they appear on the same D7-branes, also products of the

additional fields Φexo and Φabel

W ∼
∏

i

Φ
(i)
SM

∏

j

Φ(j)
exo

∏

k

Φ
(k)
abel e−TE3 . (3.9)

Note that for gauge instantons or gaugino condensates there will be determinants of the

matter fields in the denominator. Furthermore, in the equation above TE3 =
∑

i m
iTi

denotes the Kähler modulus corresponding to the instanton on the cycle DE3 =
∑

i m
iDi.

The important point is now that, for phenomenological reasons, at this high scale we

do not want to break the MSSM gauge symmetry by giving VEVs to these fields. If we

allow for VEVs of charged matter fields, the D-term potential (3.4) generates a mass of the

generic order Mmatter = MPl/
√
V = Ms for them, i.e. the matter fields become very heavy.

The MSSM gauge symmetry breaking and mass generation should occur as usual at the

low scale in the process of supersymmetry breaking. Therefore, we are only interested in

vacua with 〈ΦSM〉 = 〈Φexo〉 = 0, so that effectively the contribution of such an instanton

to the superpotential vanishes and the F-term potential VF does not depend explicitly on

TE3. What could be possible in principle is to allow VEVs for GUT Higgs fields.

Of course this argumentation is not really satisfying as in a fully realistic moduli

stabilisation scenario, we also would like to have these charged matter fields dynamically

stabilised. But our point of view is, that it is very likely that in a given concrete model

the four contributions:7

• the soft supersymmetry breaking mass terms Vsoft = m2Φ2
SM,

• the perturbative and instanton induced superpotential contributions of the form W =∏
ΦSM,

• the D-terms and

• the generic absence of gauge instantons or gaugino condensates for MSSM fields, i.e.

terms like Wgauge ∼ 1
det[ΦSM] e−Sinst

suffice to freeze to MSSM matter fields at 〈ΦSM〉 = 〈Φexo〉 = 0. If such a mechanism is

indeed at work, then, since they appear in the same open string sector, also the fields Φabel

are likely to be frozen at vanishing VEVs. However, just from phenomenology these VEVs

could be non-vanishing, a fact to be kept in mind when we will mainly discuss the case

〈Φabel〉 = 0.

Therefore, if we want to fix the size of the four-cycle the E3-instanton is wrapping, it

should not have any zero modes charged under the Standard Model gauge symmetry. Recall

that we derived the analogous condition also for moduli freezing via gaugino condensates

on a stack of D7-branes wrapping a four-cycle DG. There too, DG should not have any

charged matter fields from intersections with branes supporting the MSSM.

7See for instance [60, 61] for a recent discussion of matter fields moduli stabilisation.
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Recalling then equation (3.6), we have to satisfy the necessary condition

Na

∫

X
c1

(
La

)
∧
[
Da

]
∧
[
DE3

]
= 0 , (3.10)

for Standard Model branes wrapping the divisor Da with line bundle La. Furthermore, not

only the chiral instanton zero modes have to be absent but also those which are vector-like.

For determining them one has to compute the cohomology classes

H i

(
Da ∩ DE3 , La ⊗K

1
2
Da

⊗K
1
2
DE3

)
for i = 0, 1 , (3.11)

where KD denotes the canonical line bundle of the divisor D ⊂ X . If these cohomology

classes are non-trivial, extra pairs of instanton zero modes are present and the resulting

term in the superpotential will be of the form (3.9). However, in this paper we will mainly

be concerned with chiral zero modes and generically do not explicitly determine the vector-

like ones. But one has to keep in mind that they might be present and one has to worry

about soaking them up.

Coming back to equation (3.10), we can expand the Poincaré dual of the instanton

cycle [DE3] in a basis {ωi} of two-forms in H1,1(X )

[
DE3

]
=
∑

i

mi ωi . (3.12)

Then, we define the following matrix

Ma,i =

∫

X
c1

(
La

)
∧
[
Da

]
∧ ωi , (3.13)

with i = 1, . . . , h1,1(X ) and a = 1, . . . , K where K is the number of MSSM supporting D7-

branes carrying U(N) gauge symmetry . To not over-constrain the system, we can assume

that K ≤ h1,1 and so the maximal number of linear independent E3-brane instantons NE3

one is allowed to introduce is given by the kernel of the matrix Ma,i.

Since the kernel of the matrix (3.13) is not equal to h1,1(X ) because of the chirality of

the MSSM, it is clear that not all Kähler moduli can be stabilised by E3-brane instantons.

But let us expand the Kähler form J in the basis {ωi} as J =
∑

i t
i ωi. Recalling then

equation (3.3), we find that the Fayet-Iliopoulos parameter can be expressed as

ξa =
1

V̂

∫

X
c1

(
La

)
∧
[
Da

]
∧ Ĵ =

1

V̂
∑

i

Ma,i t̂i , (3.14)

so that the Kähler moduli will also appear in the D-terms. The vanishing of the D-terms

then provides additional restrictions on the ti. The number of moduli fixed through these

equations is given by the rank of the matrix Ma,i which satisfies rk(M) ≥ Kanom where

Kanom denotes the number of anomalous U(1) gauge factors supported on the MSSM

branes. To be more precise, the Kähler moduli counted by the defect of Ma,i are fixed

by the D-term. These are orthogonal to the ones possibly fixed by E3-instantons and are

in the kernel of Ma,i. Since the MSSM matter spectrum is chiral, it is clear from the

definition of Ma,i that there must be at least one anomalous U(1) gauge factor.
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To summarise: at most h1,1 − Kanom Kähler moduli can be fixed by E3-instantons

whereas for the remaining moduli, which control the size of the D7-branes supporting the

MSSM sector, there appears a D-term potential. For not destabilising the large volume

minimum due to the 1/V2 factor in front, this D-term has to vanish. Therefore, despite our

initial concern, with sufficient rigid instantons being present in a model, we have enough

constraints to fix all Kähler moduli. If we cannot fix all remaining Kähler moduli via

instantons and D-terms, there also exist the possibility that they are frozen similar to V by

perturbative corrections to the F-term scalar potential. Arguments have been given that

this should occur for the QCD axion [62].8

Clearly, the general arguments presented above need to be investigated more carefully

for each model, this is however beyond the scope of this paper. From now on, if not

dynamically proven but at least phenomenologically motivated, we generally assume

〈ΦSM〉 = 〈Φexo〉 = 〈Φabel〉 = 0 , (3.15)

so that the vanishing of the D-terms in the MSSM sector effectively implies the vanishing

of the Fayet-Iliopoulos parameters (3.14). We will mention at certain points the changes

once VEVs of Φabel are nonvanishingg, but as we stressed already so far we do not have a

complete theory to dynamically freeze these moduli.

3.4 F-term scalar potential

In the original work about the large volume scenario [16], only the case with one E3-brane

instanton along one small four-cycle was studied in detail. Later it was argued that similar

results carry over to configurations where more than one four-cycle stays small supporting

instantons [29]. For our purpose it is useful and illustrative to start again from a general

setup and perform the steps along the lines of [16].

Similarly to section 2.1, we assume that the complex structure moduli U and the

axio-dilaton S have been fixed by fluxes via DUW = DSW = 0 and the value of the

Gukov-Vafa-Witten superpotential (2.2) in the minimum will again be denoted by W0. For

the stabilisation of the Kähler moduli we use the usual α′-corrected Kähler potential (2.3)

and introduce E3-instantons. However, we we allow for instantons wrapping general four-

cycles Dα = M i
αDi where M i

α are the wrapping numbers of the instanton α and {Di} is a

basis of four-cycles on X . The superpotential then takes the form

W = W0 +
∑

α

Aα e−2πM i
αTi , (3.16)

where the sum is over all contributing instantons in the large radius limit. Computing the

8We thank Joe Conlon for bringing this to our attention.
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Kähler metric similarly to [63], we can write the scalar F-term potential as

VF = eK

(
−(2π)2

2

(
2V̂ + ξ̂

)∑

α,β

Vol
(
Dα ∩ Dβ

)
Aα Aβ e−2πM i

αTi e−2πMj
βT j

+
(2π)2

4

4V̂ − ξ̂

V̂ − ξ̂

∑

α,β

τ̂α τ̂β Aα Aβ e−2πM i
αTi e−2πMj

βT j

+
2π

2

4V̂2 + V̂ ξ̂ + 4ξ̂2

(
2V̂ + ξ̂

)(
V̂ − ξ̂

)
∑

α

τ̂α

(
Aα e−2πM i

αTiW + Aα e−2πM i
αT iW

)

+ 3 ξ̂
V̂2 + 7V̂ ξ̂ + ξ̂2

(
2V̂ + ξ̂

)2(V̂ − ξ̂
)
∣∣W
∣∣2

)
.

(3.17)

Here we have used V̂ and τ̂α to respectively denote in Einstein-frame the volume of the

Calabi-Yau manifold and the volume of the four-cycle wrapped by the instanton α. Fur-

thermore, to simplify the formulas we used

Vol
(
Dα ∩ Dβ

)
= M i

α M j
β Kijk t̂

k (3.18)

for the volume of the intersection of two four-cycles Dα and Dβ (in Einstein-frame) and

we have defined ξ̂ = ξ/g
3/2
s .

Let us now perform the large volume expansion of VF . Note that in this limit the second

term in (3.17) is sub-leading. Keeping also only the leading term W0 in the superpotential,

we find up to an overall constant

VF ≃− (2π)2

V̂
∑

α,β

Vol
(
Dα ∩ Dβ

)
Aα Aβ e−2πM i

αTi e−2πMj
βT j

+
2π

V̂2

∑

α

τ̂α

(
Aα e−2πM i

αTi W 0 + Aα e−2πM i
αT i W0

)
+

3

4

ξ̂

V̂3

∣∣W0

∣∣2 .

(3.19)

In the one instanton case, the second term in equation (3.19) was the only place where

the axion corresponding to the instanton appeared. Recalling Ti = τ̂i + iρi, such a term

could be written as Xeiρ + Xe−iρ and upon minimising the potential with respect to ρ,

it was rendered real and negative [16, 17]. The negativity of this term was crucial for the

existence of the minimum of the F-term potential at exponentially large volume.

In the general case of more than one instanton, the first term in (3.19) also depends on

the axions, provided the volume of the intersection locus of the respective instanton-cycles

is non-vanishing. In this case, a more careful analysis of VF is needed, which we leave for

future work [64]. Requiring though that

Vol
(
Dα ∩ Dβ

)
= 0 (3.20)

for all pairs of instantons with α 6= β , guarantees that the respective axions are stabilised

in the way described above by the second term in (3.19).

For the following, we will restrict ourselves to the case of one instanton wrapping a

general four-cycle DE3 in the Calabi-Yau manifold. Employing then the stabilisation of the
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axion associated to the instanton illustrated above, the F-term potential for one E3-brane

instanton simplifies to

VF ≃− (2π)2

V̂
Vol
(
DE3 ∩ DE3

) ∣∣AE3

∣∣2 e−4πτ̂E3

− 4π

V̂2
τ̂E3 e−2πτ̂E3

∣∣AE3W0

∣∣+ 3

4

ξ̂

V̂3

∣∣W0

∣∣2.
(3.21)

This expression is nearly similar to the well-known expression of VF (2.10) in the original

large volume scenario. The only difference is the first term. If we find that

Vol
(
DE3 ∩ DE3

)
≃ −

√
τ̂E3 , (3.22)

then as shown in [16], we are guaranteed to find a minimum of VF at exponentially large

values of V and with τE3 ≃ log(V). However, in general the minima of VF will depend on

the concrete model and on the way the moduli are stabilized.

Let us summarize the results of this part. Performing the large volume expansion of

the scalar F-term potential for a general instanton configuration leads to an expression

where the axions corresponding to the instantons cannot be stabilized easily. We did not

attempt to address this question but restricted us to the case of one instanton along a

general four-cycle.

The main question is now whether it is indeed possible to freeze the Kähler moduli

controlling the size of the MSSM D7-branes via the D-terms of the U(1) gauge factors

supported on these D7-branes and whether these sizes are of the same order of magnitude

as the instantonic four-cycles. Let us collect the formal constraints we have to successfully

implement in a concrete model for this scenario to work:

• Find a Calabi-Yau of swiss-cheese type with one large four-cycle controlling the size

of the manifold and small cycles typically arising from resolutions of singularities.9

• Define an orientifold projection of this space leading to O7- and O3-planes and freeze

the complex structure and dilaton moduli by G3-form flux. This latter will contribute

to the D3-brane tadpole.

• Introduce a set of intersecting (magnetised) D7-branes supporting the chiral MSSM

spectrum and a hidden D7-brane sector such that the D7- and D3-brane tadpole

cancellation conditions are satisfied. Moreover, the D7-branes must be free of Freed-

Witten anomalies [38].

• Classify all E3-instantons on this space which from the zero mode structure can

contribute to the uncharged superpotential. For this, a sufficient condition is that

the instanton is rigid and has no other chiral or vector-like zero modes from E3-D7

intersections. Furthermore, one also needs to ensure that the instantons are free of

Freed-Witten anomalies [65].

9It would be interesting to investigate whether also for instance Calabi-Yaus with a fibration structure

can lead to large volume moduli freezing. For these the volume can usually be brought to the schematic

form V = τ1
√

τ2 −
P

I τ
3

2

I .
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• Compute the effective F- and D-term potential and analyse whether the combination

of both freezes all Kähler moduli inside the Kähler cone with the size of the D7-branes

coming out of the same order as the sizes of the instantons τ ≃ log(V).

Moreover, since in the non-supersymmetric large volume minimum the D-terms vanish, we

still only have F-term supersymmetry breaking and the soft-terms can be computed in the

usual way [37].

In the remainder of this paper, we will explicitly carry out some of the steps mentioned

above for a concrete Calabi-Yau orientifold model. Our simple (toy) model is neither

realistic nor can all conditions mentioned above be met explicitly, but it nevertheless shows

how this program can partly be realised even on a simple Calabi-Yau manifold. We leave

a more phenomenological discussion of this moduli freezing scenario for future work.

4. The P[1,3,3,3,5][15] Calabi-Yau

For the large volume scenarios reviewed in section 2.1 it is now clear that we need at

least three Kähler moduli to have both E3-instantons and a chiral D7-brane sector. The

exponentially large cycle, controlling the overall size of the manifold, is usually frozen by

the competing effects of the leading order α′-corrections to the Kähler potential and the

E3-instanton contribution. On the small cycles of a swiss-cheese type Calabi-Yau, the

instantons and the D7-branes will be distributed.

Checking some Calabi-Yau three-folds defined as hypersurfaces in weighted projective

spaces, we found one candidate which actually is of swiss-cheese type. It is the resolution

of the P[1,3,3,3,5][15] manifold. It will turn out that this Calabi-Yau is still not rich enough

to allow for complex structure moduli stabilisation by fluxes and a complete MSSM sector,

but serves as a simply toy model to give a proof of principle how the combination of F-

and D-term moduli stabilisation can work in more realistic models. Let us describe the

algebraic geometry of this Calabi-Yau in some more detail in the next subsections.

4.1 The topology of P[1,3,3,3,5][15]

Toric resolution. The P[1,3,3,3,5][15] manifold has a Z3 singularity along the complex

line x1 = x5 = 0, which is met by the hypersurface constraint. The resolution of this A2

orbifold singularity introduces two intersecting P
1s over the line.

This resolution is easily described invoking the methods of toric geometry. Besides

the five divisors v∗1 = (1, 0, 0, 0), v∗2 = (0, 1, 0, 0), v∗3 = (0, 0, 1, 0), v∗4 = (0, 0, 0, 1), v∗5 =

(−3,−3,−3,−5) one introduces the two blowing-up divisors v∗6 = (−2,−2,−2, 3) and v∗7 =

(−1,−1,−1,−1). The unique maximal triangulation is then given by

Triangle =
{
[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 4, 7], [1, 2, 6, 7], [1, 2, 5, 6], [1, 3, 4, 7],

[1, 3, 6, 7], [1, 3, 5, 6], [2, 3, 4, 7], [2, 3, 6, 7], [2, 3, 5, 6]
}

.
(4.1)
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The data of the associated linear sigma model is the following. We have seven complex

coordinates xi with three U(1) symmetries. The corresponding charges are shown in (4.2).

x1 x2 x3 x4 x5 x6 x7 p

3 3 3 5 1 0 0 15

2 2 2 3 0 1 0 10

1 1 1 1 0 0 1 5

(4.2)

The divisors Di are defined by the constraints xi = 0 and the resulting Stanley-Reisner

ideal reads10

SR =
{

x4 x5 , x4 x6 , x5 x7 , x1 x2 x3 x6 , x1 x2 x3 x7

}
. (4.3)

The triple intersection numbers in the basis η1 = D5, η2 = D6, η3 = D7 are calculated as

I3 = 9 η3
1 − 40 η3

2 − 40 η3
3 − 15 η2

1η2 + 25 η1η
2
2 − 5 η2

2η3 + 15 η2η
2
3 . (4.4)

From section 2.1 we recall that the volume τi of the divisor Di and the overall volume of

the manifold (in string-frame) are expressed in terms of the Kähler form in the following

way

τi =
1

2

∫

X

[
Di

]
∧ J ∧ J , V =

1

6

∫

X
J ∧ J ∧ J . (4.5)

Expanding then the Kähler form in the basis {η1, η2, η3} from above as J =
∑3

i=1 ti [ηi] we

find for the volumes of the divisors D5, D6 and D7

τ5 =
1

2

(
3 t1 − 5 t2

)2
,

τ6 =
5

6

[(
3 t3 − t2

)2
−
(
5 t2 − 3 t1

)2
]

,

τ7 = −5

2

(
t2 − 4 t3

)(
t2 − 2 t3

)
.

(4.6)

The Kähler cone. Next, we are going to determine the Kähler cone, which is defined

by the condition that the volumes of all effective curves C are positive. The first step is

to compute the cone of all effective curves, which is called the Mori cone and then deduce

from this the Kähler cone by the condition
∫
C J > 0. The resulting constraints describing

the Kähler cone are

t2 − 2 t3 > 0 , t1 − 2 t2 + t3 > 0 , −3 t1 + 5 t2 > 0 . (4.7)

These conditions ensure also that the overall volume V is positive, that all volumes of

effective divisors are positive and, by construction, that all volumes of holomorphic curves

are positive.

10We used the maple package “Schubert” to perform part of these computations.
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Swiss-cheese structure. For a large volume compactification we want to make one

four-cycle large while keeping the others small. Let us therefore take a closer look at the

volume. Using the Kähler cone restrictions above, we find that V can be written as

V =

√
2

45

((
5τ5 + 3τ6 + τ7

)3/2 − 1
3

(
5τ5 + 3τ6

)3/2 −
√

5
3

(
τ5

)3/2
)

. (4.8)

From this expression we see that this model admits a swiss-cheese structure. Indeed, we

can make τ7 large so that the total volume V becomes large while keeping the four-cycles

volumes τ5 and τ6 small. On the latter ones the D-branes supporting the MSSM will be

wrapped.

In such a setup, we are thus not allowed to wrap D-branes supporting the MSSM on

(some combination involving) D7 because then the gauge coupling 1/g2
YM ∼ τ7 would be

too small. Similarly, we ignore instantons along this divisor, because its contribution to

the superpotential is exponentially suppressed. We are then left with the two divisors D5

and D6. Note however that not all combinations of D5 and D6 are allowed. We have to

wrap D-branes and instantons along effective cycles, i.e. positive linear combinations of the

divisors.

Rigid cycles. Furthermore, we require the instanton to be rigid in the sense that no

extra fermionic zero modes from the deformations of the cycle or from Wilson lines along

one-cycles do appear. The transverse deformations of a holomorphic four-cycle D are

counted by the global sections of the normal bundle N of D. By the adjunction formula

and Serre duality on D we get H0(D, ND) = H2(D,OD). The Wilson lines are counted by

the non-contractable one-cycles on D, which are counted by H1(D,OD). Therefore, for an

instanton to not have additional deformation zero modes we will require

H0
(
D,OD

)
= 1 , H i

(
D,OD

)
= 0 , for i = 1, 2 . (4.9)

A necessary criterion for this is that the Euler characteristic of the trivial line bundle over

D is equal to one, i.e.

χ
(
D,OD

)
=

2∑

i=0

(−1)i H i(D,OD) = 1 . (4.10)

Employing the Koszul sequence

0 → OX [−D] → OX → OD → 0 , (4.11)

and the resulting long exact sequence in cohomology, one obtains the relation χ(D,OD) =

χ(X ,O[−D]).

In our concrete example, for a four cycle D = mη1 +n η2 + l η3 the Euler characteristic

is calculated as

χ
(
D,OD

)
=

15

2
nl2 +

25

2
mn2 − 5

2
n2l − 15

2
m2n − 20

3
l3

−20

3
n3 +

5

3
n +

5

3
l +

3

2
m3 − 1

2
m . (4.12)
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D5

D6

Figure 1: Singular rigid divisors.

Looking via a computer search for combinations with χ(D,OD) = 1 and l = 0 we have

found the solutions

(m, n, l) =
{
(1, 0, 0) , (1, 1, 0) , (2, 1, 0) , (2, 2, 0) , (12, 11, 0)

}
. (4.13)

In order to compute the precise cohomology classes H i(D,OD), we use the cohomology

classes of general line bundles on the toric ambient space shown in appendix A and then run

them through the Koszul sequences for the restrictions on the Calabi-Yau hypersurface and

the divisors D. The result is that the first four divisors in (4.13) really have H i(D,OD) =

(1, 0, 0), i.e. these are irreducible effective divisors without any Wilson lines or transverse

deformations.

One comment is in order here. Note that the three rigid divisors (1, 1, 0), (2, 1, 0),

(2, 2, 0) are singular. Let us explain this for the first one D5 + D6. The only constraint

one can write down of this degree is Q = x5 x6 = 0. This defines two complex divisors

x5 = 0 and x6 = 0 intersecting along the curve x5 = x6 = 0, where the manifold becomes

singular. Since the four-cycle has no deformations, the singularity cannot be smoothed out.

A lower dimensional analogy is shown in figure 1. In the following we allow E3-instantons

and D7-branes to also wrap these rigid cycles.11 Once we will have specified our orientifold

projection, we will show that all these rigid cycles carry SP gauge group for D7-branes

wrapped around them and consequently SO gauge group for wrapped E3-instantons.

A similar structure appears for the rigid cycle 2D5+D6. By computing H i(2D5,O)) =

(11, 0, 0), we find that the instanton divisor has the structure shown figure 1. The inter-

section between D6 and any of the eleven components of 2D5 is over a two cycle.

Diagonal basis. In the following it will be more convenient to work in a basis where the

volume V as well as the triple intersection numbers become particularly simple. Guided

by (4.8), we introduce the new basis of divisors as

Da = 5D5 + 3D6 + D7 , Db = 5D5 + 3D6 , Dc = D5 , (4.14)

11We have been informed by Volker Braun, that they have identified such topologies of world-sheet

instantons to contribute to the heterotic superpotential [66 – 68].
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for which the triple intersection numbers diagonalise

I3 = 5D3
a + 45D3

b + 9D3
c . (4.15)

The total volume in terms of the divisor volumes τa, τb and τc reads

V =

√
2

45

(
τ3/2
a − 1

3
τ

3/2
b −

√
5

3
τ3/2
c

)
. (4.16)

Expanding also the Kähler form in this diagonal basis as J = ta Da − tb Db − tc Dc, we find

that the Kähler cone conditions have the very simple form

1

3
ta > tb > tc > 0 . (4.17)

As one can see from the above, the large divisor is now simply Da. For the gauge couplings

not to be unrealistically small, we do not wrap the D7-branes supporting the MSSM along

the large cycle. Moreover, significant E3-instanton contributions only arise from instantons

wrapped on the small four-cycles. Therefore, we can make the general ansatz for the D-

brane and instanton cycles

DD7 = nb Db + nc Dc , DE3 = mb Db + mc Dc , (4.18)

where now the wrapping numbers n and m need not be integer. They are related to the

wrapping numbers ni in the {ηi} basis by

nb =
1

3
n2 , nc = n1 −

5

3
n2 , (4.19)

and similarly for (mb, mc).

4.2 Moduli stabilisation

Now that we have collected all the topological data, we can develop our model further. It

will turn out that the tadpole cancellation conditions for the present setup impose strong

restrictions so that we cannot consider a full MSSM set-up but only a chiral toy model.

We will have two stacks of D7-branes wrapping rigid four-cycles DA and DB where only

on the first one a non-trivial line bundle LA is turned on. We consider the Standard Model

as being part of the U(NA) gauge group on the first stack of branes (even though in the

eventual model it will not have large enough gauge group). Then we get MSSM matter from

the intersections AA′ and AB where the prime denotes the orientifold image. Connecting

to our discussion in section 3.3, we in general allow the gauge group U(NA) to be larger

than just the MSSM gauge group. Then from the two intersections AA′ and AB we get

matter ΦSM which is part of the Standard Model. Furthermore, we get other matter Φabel

transforming in singlet representations of the MSSM gauge group, but carrying certain

charges under abelian U(1)s orthogonal to U(1)Y . In addition, in order for satisfying the

D7-brane tadpoles we need extra hidden sector branes.

Before we give the complete model, let us first elaborate on the D- and F-term con-

straints.
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D-Term constraints. In section 3.1 we have explained that the D-terms in large vol-

ume scenarios should vanish in order not to spoil the 1/V expansion of the scalar F-term

potential and the resulting minimum. The D-term contains the Fayet-Iliopoulos parameter

ξ and the possible matter fields ΦSM, Φexo and Φabel. However, as argued previously, for

the simple reason that the SM gauge symmetry is unbroken at low energies, at least the

VEVs of the first two matter fields have to vanish and for Φabel it is likely to vanish. For

the MSSM sector, we are thus left with the requirement that ξA = ξB = 0. Recalling the

precise form of the FI-parameter (3.3), the condition ξA = 0 reads

0 =

∫
c1(LA) ∧

[
DD7A

]
∧ J . (4.20)

For the second D7-brane the condition ξB = 0 is trivially satisfied because of c1(LB) = 0.

Next, we consider the (chiral) zero mode constraint from the D7-E3 intersections. The

only non-trivial equation comes from D7A and reads

0 =

∫
c1(LA) ∧

[
DD7A

]
∧
[
DE3

]
. (4.21)

Using then our ansatz (4.18) in the diagonal basis, we find that the only suitable solution

to the two equations above is

J = ta
[
Da

]
− t
[
DE3

]
. (4.22)

Let us note that this solution implies tb = 1
3 mb t and tc = 1

3 mc t. Comparing with the

Kähler cone constraint tb > tc > 0 and going back to the basis in {η1, η2, η3}, we see that

only wrapping numbers with 2m2 > m1 > 5
3m2 are possible. This cannot be solved by any

of the rigid cycles (m1, m2, m3) ∈ {(1, 0, 0), (1, 1, 0), (2, 1, 0), (2, 2, 0)}. However, the choice

(m1, m2, m3) = (2, 1, 0), i.e. DE3 = 1
3(Db + Dc), is at least on the boundary of the Kähler

cone at tb = tc. Of course, we cannot choose instantons at will but have to take all of them

into account. But we can arrange our setup in such a way that only an instanton along

the cycle (m1, m2, m3) = (2, 1, 0) contributes to the stabilisation of the Kähler moduli. We

will come back to this point after we specified the orientifold projection and the D-branes

in our model. Note furthermore, by allowing a non-vanishing VEV for Φabel, it might be

possible to fix tb and tc on a ray inside the Kähler cone via the instanton above.

Let us now choose the stacks of D7-branes to wrap the rigid four-cycles

DD7A
= D5 + D6 =

1

3
(Db − 2 Dc) , DD7B

= D5 = Dc , (4.23)

with the line bundles

LA =
1

3
(2Db + 5Dc) , LB = O . (4.24)

With this choice, as shown above, there are no chiral zero modes on the D7 − E3 in-

tersections. However, similar to [69], we expect both vector-like bosonic and fermionic

zero modes, because, as shown in figure 1, the rigid E3-instanton actually contains both

DD7A
= D5 + D6 and DD7B

= D5 as a sub-locus. One way to get rid of these zero modes,
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would be to turn on discrete Wilson lines or discrete displacement on the D7-brane resp.

E3-instanton. It is beyond the scope of this paper to analyse mathematically this possibility

for these divisors. From now on, we proceed by assuming that such non-chiral zero modes

can be made massive so that indeed the E3-instanton on DE3 = 2D5 + D6 contributes to

the uncharged superpotential.

Before concluding this part, let us note that the vanishing of the D-term gives rise

to a minimum of the scalar D-term potential. Moreover, we have argued that the F-

term potential does not depend on at least one linear combination of Kähler moduli τ

which however appears in the D-term. For moduli stabilisation this means that ∂V/∂τ =

∂VD/∂τ = 0 is solved by the vanishing D-term and thus in our setup fixes

tb = tc =: t . (4.25)

In the diagonal basis this solution implies that D6 shrinks to zero size but D5 stays finite.

Note first, our Standard Model branes do both involve D5 and so their volume is always

non-zero. Second, for a non-vanishing VEV of Φabel we expect the volume of D6 to be

finite.

F-Term constraints. Let us now go on and study the F-term potential. Since we only

have a single instanton contributing to the potential, we can refer to equation (3.21). Using

then the concrete data of our model, we find Vol
(
DE3 ∩ DE3

)
= −5tb − tc and therefore

VF ≃ (2π)2

V̂
(
5t̂b + t̂c

) ∣∣AE3

∣∣2 e−4πτ̂E3 − 4π

V̂2
τ̂E3 e−2πτ̂E3

∣∣AE3W0

∣∣+ 3

4

ξ̂

V̂3

∣∣W0

∣∣2. (4.26)

The first term cannot be expressed as a square root of τ̂E3 = 1
6

(
45t̂2b+9t̂2c

)
and so the analysis

of [16] for the minimum of VF at large volumes is not applicable. However, employing

equation (4.25), we find the following relation between the volume of the instanton cycle

and the volume of its self-intersection

Vol
(
DE3 ∩ DE3

)
= −6 t̂ = −2

√
τ̂E3 . (4.27)

Note that this volume formally is negative, which simply reflects the fact that the four-

cycle DE3 is exceptional with a self-intersection not corresponding to an effective two-cycle.

Using this relation, the above expression becomes

VF ≃ 8π2

V̂
√

τ̂E3

∣∣AE3

∣∣2 e−4πτ̂E3 − 4π

V̂2
τ̂E3 e−2πτ̂E3

∣∣AE3W0

∣∣+ 3

4

ξ̂

V̂3

∣∣W0

∣∣2. (4.28)

Recalling our discussion in section 3.4, the 1/V̂ expansion of the F-term potential is of the

form which allows for a minimum of VF at large values of V̂.

We can then treat these variables as fixed and use their relation to the Kähler moduli.

We obtain

tb = tc = t =
1

3

√
τE3 , ta =

(
6

5
V0 +

2

5
τ

3/2
E3

)1/3

, (4.29)
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where we denoted the value of V in the minimum by V0. Therefore, in this model all Kähler

moduli have been stabilised. To be more precise, we have seen that all coefficients ta in the

expansion of J are fixed and so are the real parts of the Kähler moduli Ti. Furthermore,

through the F-term potential the axion corresponding to the instanton cycle is stabilised

and via the D-term and Green-Schwarz mechanism the axion associated with the matter

sector gets massive.

For the Kähler moduli, we now get three different mass scales. Since the D-term

vanishes in the minimum, the mass of the large volume modulus and the small cycle fixed

by the instanton do not change. Just keeping track of the 1/V0 factor they scale like

Mτb
≃ MPl/V3/2

0 and Mτs ≃ MPl/V0 [17]. The orthogonal Kähler modulus fixed by the

D-term then has mass MτD ≃ MPl/
√V0, which being of string scale size is much heavier

than the other two.

Numerical analysis. In order to explicitly check that the large volume minimum of the

full scalar potential persists in our model, we have numerically evaluated equation (4.26).

Installing the appropriate factors of 2π and gs, and choosing |AE3| = 1, |W0| = 5, we

minimised the function12

VF+D

(
V, τb, τc

)
= +

18.6

V
(√

5τb +
√

τc

)
gs e

− 4π
3

1
gs

(τb+τc)

− 20.9

V2

(
τb + τc

)
g2
s e

− 2π
3

1
gs

(τb+τc) +
6.5

V3
g3
s

+
13.3

V2

1

τb − 2τc
g3
s

(√
5τc −

√
τb

)2
.

(4.30)

Note that we have not yet fixed the value of gs which is determined by the VEV of the

dilaton. We have assumed that it is stabilized by fluxes and since we did not perform an

explicit analysis of this mechanism, we choose gs = 1/10 for convenience. However, as

noted in [18], the stabilised volume V will depend exponentially on gs through V ∼ ec/gs

where c is some constant. Thus, a more careful analysis of the flux sector is inevitable.

Coming back to the potential above, we observe that the dominant part of (4.30) is

given by the D-term potential fixing the combination τb = 5τc. On top of that direction,

we found a minimum of the potential in the variables V and τb. In figures 2 and 3, we have

plotted two sections through the parameter space showing the potential in the vicinity of

the minimum. The numerical values (in string units) in the minimum are V ≈ 2.2 · 1016

and the four-cycle volumes are stabilised at τb ≈ 1.63, τc ≈ 0.33.13 For the volume of the

Standard Model cycles we find τSM ≃ 0.33 and the value of the scalar potential in the

minimum is of the order Vmin ≃ −10−54 M4
Pl.

The stabilised four-cycle volumina are in a region where we have to worry whether

we can trust the supergravity approximation. Let us investigate more closely what the

numerical reason is. Recall from [16] the approximate formulas for the volume V and the

12A very similar potential appeared in [62], but without the D-term part.
13If we minimise the potential (3.17) instead of its large volume expansion (4.30), we find the minimum at

τc ≃ 0.53, τb ≃ 2.64 and V ≃ 1.1 · 1013 for gs = 1/10. The difference in the value of V can be compensated

by arranging gs = 1/12 so that the minimum is at τc ≃ 0.53, τb ≃ 2.64 and V ≃ 7 · 1015.
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1.62

1.63

1.64
Τb

-4´10-9

-2´10-9

0

2´10-9

4´10-9

Τb-5Τc

0

2´10-53

4´10-53

Vpot

1.62

1.63

1.64
Τb

0

-53

Figure 2: The potential V (V, τb, τc) for V = 2.15 · 1016.

1.75´10162´10162.25´10162.5´10162.75´10163´1016

Vol

1.625

1.63

1.635

1.64

1.645

Τb=5Τc

-8´10-54
-7.5´10-54
-7´10-54

-6.5´10-54
-6´10-54

Vpot

1.625

1.63

1.635

1.64

1.645

Τb=5Τc

Figure 3: The potential V (V, τb, τc) for τc = 0.33.

four-cycle in the minimum

V ≃ µ gs

∣∣W0

∣∣
2 λ as

∣∣As

∣∣

(
4 νλ ξ

µ2

)1/3

e
as
gs

“

4 νλ ξ

µ2

”2/3

, τ ≃
(

4 νλ ξ

µ2

)2/3

, (4.31)

where we have used the notation from equation (2.10). Note that λ contains the information

about the intersection of the instanton cycles and thus depends on the topology of the
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manifold and on the cycles suitable for instantons. Furthermore, ξ is proportional to the

Euler characteristic χ and so the above formulas depend strongly on the topology of the

compactification manifold.

For our present model, using the data after D-term fixing but leaving the Euler char-

acteristic χ and the string coupling gs unspecified, we obtain

V ≃ 6.1 · 10−2 gs

(
−χ
)1/3

e
0.145 1

gs
(−χ)2/3

, τSM ≃ 1.2 · 10−2
(
−χ
)2/3

. (4.32)

Therefore the prefactor of order 10−2 in (4.32) and the smallness of the Euler characteristic

χ = −144 of our Calabi-Yau manifold are the reasons for the string-frame four-cycle volume

τSM to come out so small.

Just as a rough estimate, let us analyse for which values of gs and χ the formulas (4.32)

give more realistic values of the Kähler moduli. Choosing for instance τSM = 1.2 leads to

χ ≃ −1000. For the string coupling gs = 3
8 we then get V = 5 · 1015. This points to-

wards choosing Calabi-Yau’s with Euler-characteristics just at the limit of presently known

examples for χ.

4.3 Orientifold with tadpole cancellation

We now show that the setup introduced in the previous section can really be implemented

in a globally defined orientifold model. We choose the holomorphic involution σ of the

orientifold projection to permute the complex coordinates x1 and x2. Then the divisors

D5, D6, D7 are invariant and we have h+
1,1 = 3 and h−

1,1 = 0. The orientifold plane is given

by

DO7 = 3η1 + 2η2 + η3 = Da −
1

3
Db −

1

3
Dc , (4.33)

and the cohomologies for this cycle are H i(DO7,O) = (1, 0, 3). A careful analysis shows that

in addition, the orientifold projection also leaves three points on the Calabi-Yau manifold

invariant. This can be seen as follows. Choose the intersection of x3 = x4 = x7 = 0 which

gives five points. These are described as the solutions to the equation x5
1 + x5

2 = 0 in the

variables (x1, x2, x5, x6) up to the projective identifications shown in (4.2). These latter

allow to fix (x5, x6) to the point (1, 1) and to see that the solution (x1, x2) = (1,−1) is

invariant under σ. The other four points are pairwise interchanged. The same story also

holds on the intersections x3 = x6 = x7 = 0 and x3 = x5 = x6 = 0 giving the claimed three

O3-planes.

Let us state a criterion by which we can decide whether on a stack of Ωσ(−1)FL

invariant D7-branes we get an SO or SP projection. In the geometric orientifold we are

considering, placing the D7-branes right on top of the O7-plane gives an SO(8) gauge

symmetry. Wrapping another D7-brane on a σ invariant four-cycle D with trivial gauge

bundle, also leads to an SO or SP gauge symmetry. If the configuration is such that

D intersects the O7-plane over a two-cycle, then locally around the intersection the open

string stretched between the D7-brane on D and the one on DO7 has four Neuman-Dirichlet

boundary conditions and therefore carries an SP gauge group.

– 26 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
8

Let us first consider the simple model with eight D7-branes on top of the O7-plane.

Using
∫
DO7

c2

(
TO7

)
= 45 in the eq. (2.15), the resulting D3-brane tadpole is

ND3 + Nflux = 12 , (4.34)

so that the Euler characteristic of the Calabi-Yau four-fold is χ(Y) = 288.

Now we are considering the model from the previous section with magnetised D7-

branes. For convenience, let us recall its instanton and D7-brane data

DE3 = 2η1 + η2 = 1
3

(
Db + Dc

)
, c1

(
LE3

)
= 0 ,

DA = η1 + η2 = 1
3

(
Db − 2Dc

)
, c1

(
LA

)
= 5η1 + 2η2 = 1

3

(
2Db + 5Dc

)
,

DB = η1 = Dc , c1

(
LB

)
= 0 .

(4.35)

Note that since we do not have a gauge bundle on the second D7-brane, it is invariant under

the orientifold projection. Because it intersects the O7-plane over a two-cycle, according to

our criterion from above it carries an SP (2NB) gauge symmetry. Similarly, the Ωσ(−1)FL

invariant instanton cycle DE3 intersects the O7-plane over a two-cycle and carries therefore

an O(1) gauge symmetry.

The chiral matter between the D7-branes can be computed using the rules from table 1.

Leaving the number of coincident branes NA and NB unspecified, we find

10 ×
[
AA

]
+ 10 ×

[
SA

]
+ 10 ×

[
(NA, 2NB)

]
. (4.36)

However, this spectrum is only free of anomalies if we impose NB = NA. Thus, the

spectrum of our model reads as follows.

U(NA) × Sp(2NA)

10 ×
(

�
� , 1

)

10 ×
(

�� , 1
)

10 ×
(

� , �
)

(4.37)

Furthermore, we have to satisfy the tadpole cancellation condition for the D7-branes which

restricts NA as NA ≤ 6.

The D3-brane tadpole is more involved. The various topological quantities contributing

to the formula (2.14) are found as
∫

DA

ch2

(
LA

)
= −5 ,

∫

DA

c2

(
TDA

)
= −17 ,

∫

DB

c2

(
TDB

)
= 3 . (4.38)

The condition is that, after including also the hidden sector branes, the number of ND3 +

Nflux is non-negative. We found only one solution, which works. We choose the minimal

case NA = 1 and in order to satisfy the D7-brane tadpole constraint, we include the hidden

branes

NC = 3 : DC = DO7 = 3η1 + 2η2 + η3 , (4.39)

ND = 1 : DD = η1 + η2 + η3 ,
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with trivial gauge bundles. The four-cycle DC is equal to the O7-plane and DD is a rigid

cycle with H i(DD,O) = (1, 0, 0) and
∫
DD

c2

(
TDD

)
= −37. Adding up all contributions to

the D3-brane tadpole condition gives

ND3 + Nflux = 3 . (4.40)

After having specified the orientifold projection and the D-branes in our model, we

can now revisit our claim that only the O(1) instanton along 2D5 + D6 contributes to the

stabilisation of the Kähler moduli. Using equation (2.12), we find that there are always

chiral zero modes between stringy instantons and D-branes except for DE3 = 2D5 + D6.

Therefore, if present, a term in the superpotential involving the Standard Model fields

will be generated. Following our argumentation from section 3.3, such contributions have

to be absent because Standard Model fields should not acquire a VEV. Similarly, the

contribution from the gauge instanton on top of DA has to vanish. Thus, only the instanton

DE3 = 2D5+D6 will contribute to the stabilisation of the Kähler moduli. However, we have

to emphasize that actually also the vector-like instanton zero modes have to be determined

as well as other mechanism to soak up unwanted fermionic zero modes have to be checked.

To conclude, it is clear that the constraint (4.40) might not give enough freedom for

the three-form fluxes to freeze all complex structure moduli. For also including this sector

consistently, one needs more involved Calabi-Yau spaces. However, we have demonstrated

at a specific swiss-cheese Calabi-Yau manifold with h1,1(X ) = 3 that a combination of

E3-instantons and D7-brane D-terms can fix all three Kähler moduli in the large volume

regime with all small cycles wrapped by D7-branes of order log(V). In our case, the

D-terms (only) fixed the moduli on the boundary of the Kähler cone, where the four-

cycle D6 collapses. Furthermore, we have argued that out of the rigid divisors (4.13)

only DE3 = 2η1 + η2 contributes to the uncharged superpotential. However, actually the

complete vector-like zero mode spectrum has to be computed for such overlapping singular

divisors and presumably also discrete Wilson lines and displacements have to be included.

This complete mathematical investigation for this specific model is beyond the scope of

this paper, whose punchline is rather to exemplify for a concrete Calabi-Yau that the F-

and D-term freezing scenario has a good chance to be realisable in concrete large volume

Type IIB orientifolds with a chiral D7-brane sector.

5. Conclusions

In this paper we have analysed the problem of combining Kähler moduli stabilisation by

instantons resp. gaugino condensation with a chiral D7-brane sector carrying the unbroken

chiral gauge theory which we would like to have in four dimensions. Clearly, in order to

make progress in deriving viable and predictive string compactifications, this question is

of utmost importance.

We argued quite generally, employing both string consistency conditions as well as

phenomenological input, that for chiral D7-brane sectors only a combination of F- and

D-terms can fix all Kähler moduli. Then we investigated whether for the very promising

large volume scenario all their unquestionable nice features can be preserved once these

– 28 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
8

D-terms are taken into account. We showed that for more than one E3-instanton also the

F-term scalar potential contains new terms containing the axionic fields, which potentially

destabilise the large volume scenario. Requiring these terms to be absent means that the

instanton cycles should not intersect. Moreover, we also allowed for singular four-cycles,

which homologically are linear combinations of the elementary ones. These also induce

a different moduli dependence in the F-term scalar potential. We plan to investigate the

general consequences of such many-instanton contributions in a future work [64].

In this paper we exemplified our general arguments about F-and D-terms by construct-

ing a concrete Type IIB orientifold on a (new) swiss-cheese type Calabi-Yau manifold with

three Kähler moduli. Ignoring the details of the three-form flux sector, we constructed a

global tadpole cancelling model which showed all the features we do expect for a realistic

model. We had a chiral intersecting D7-brane sector and a sector of hidden branes filling up

the D7-brane tadpole constraint. Due to chirality there was an induced D-term, fixing (for

vanishing VEVs of matter fields) one combination of the Kähler moduli at the boundary

of the Kähler cone. We had one rigid small cycle unoccupied by the D7-branes, so that a

stringy O(1) E3-instanton wrapped on this cycle contributed to the superpotential. Then

the F- and D-terms together fixed the overall volume V at large values and the two diagonal

small ones at size τi ≃ log(V) in a such a way that another four-cycle collapsed. Of course

there will be world-sheet instanton corrections from this collapsed cycle as well as probably

also non-negligible string loop corrections, but we only expect them to contribute to the

Kähler potential (effectively changing ξ) and to the Fayet-Iliopoulos terms, such that the

four-cycle volume is stabilised at order τ ≃ ℓ4
s. Note that, if eventually some of the Φabel

matter fields are fixed at non-zero value, the D-terms can freeze the Kähler moduli inside

the Kähler cone.

We consider our simple toy model as a proof of principle that the LVS can be robust

enough that also chiral D7-brane sectors can be introduced. Of course, phenomenologically

our model is not satisfying yet. The gauge group and matter content is not realistic and

the D3-brane tadpole constraint leaves probably not enough freedom to fix all complex

structure moduli by three-form fluxes. Moreover, our analysis of the non-chiral zero modes

was not complete. However, we are confident that these shortcoming only reflect the

simplicity of the used Calabi-Yau space. Using orientifolds of Calabi-Yau manifolds, for

which the D3-brane tadpole is much larger than χ(Y) = 288 will remedy these problems.

To this end, it would be very important to know which of the toric Calabi-Yau manifolds

in the list of [70] have a swiss-cheese like structure, respectively can lead to large volume

moduli stabilisation. It might be technically very challenging14 but would be a major step

forward to really build completely predictive concrete string compactifications with fluxes

and intersecting D7-branes on such more involved Calabi-Yau orientifolds.
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Cohomology Monomials of degree (m, n, l)

H0(M,L) P (x1, x2, x3, x4, x5, x6, x7)

H1(M,L) P (x1,x2,x3,x6,x7)
x4x5Q(x4,x5)

P (x1,x2,x3,x5,x7)
x4x6Q(x4,x6)

P (x1,x2,x3,x4,x6)
x5x7Q(x5,x7)

P (x1,x2,x3,x7)
x4x5x6Q(x4,x5,x6)

P (x1,x2,x3,x6)
x4x5x7Q(x4,x5,x7)

H2(M,L) 0

H3(M,L) P (x4,x5)
x1x2x3x6x7Q(x1,x2,x3,x6,x7)

P (x4,x6)
x1x2x3x5x7Q(x1,x2,x3,x5,x7)

P (x5,x7)
x1x2x3x4x6Q(x1,x2,x3,x4,x6)

P (x4,x5,x6)
x1x2x3x7Q(x1,x2,x3,x7)

P (x4,x5,x7)
x1x2x3x6Q(x1,x2,x3,x6)

H4(M,L) 1
x1x2x3x4x5x6x7Q(x1,x2,x3,x4,x5,x6,x7)

Table 2: Cohomology groups and corresponding monomials for P[1,3,3,3,5][15].

knowledge on algebraic geometry with us and to J. Conlon and F. Quevedo for very useful

and constructive comments about the issues discussed in this paper.

This work is supported in part by the European Community’s Human Potential Pro-

gramme under contract MRTN-CT-2004-005104 ‘Constituents, fundamental forces and

symmetries of the universe’.

A. Cohomology classes of line bundles

In this appendix we combinatorically compute the cohomology classes of general line bun-

dles L = O(m, n, l) over the resolution M of the ambient space P[1,3,3,3,5]. The correspond-

ing classes on the hypersurface X can then be computed via the Koszul sequence.

0 → L⊗O(−15,−10,−5)M → LM → LX → 0 . (A.1)

Let us recall the resolution

x1 x2 x3 x4 x5 x6 x7

3 3 3 5 1 0 0

2 2 2 3 0 1 0

1 1 1 1 0 0 1

(A.2)

Then the classes H i(M,L) can be computed by counting monomials of degree (m, n, l) [71,

72] as listed in table 2. This can be easily put on a computer. We have checked for many

examples that the results are consistent with the Euler characteristic χ(X ,L) in eq. (4.12).
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B. The P[1,1,3,10,15][30] Calabi-Yau

Here we will briefly summarise some properties of the Calabi-Yau P[1,1,3,10,15][30] as another

example of a swiss-cheese like manifold. It has five Kähler moduli out of which four are

toric. In the following we collect the toric data for the resolution of the toric singularities.

• The manifold is specified by the resolution

x1 x2 x3 x4 x5 x6 x7 x8 p

15 10 3 1 1 0 0 0 30

5 3 1 0 0 1 0 0 10

3 2 0 0 0 0 1 0 6

6 4 1 0 0 0 0 1 12

(B.1)

• The Stanley-Reisner ideal reads

SR = { x2x7 , x2x8 , x3x8 , x1x3x6 , x1x6x7 ,

x1x6x8 , x2x4x5 , x3x4x5 , x4x5x7 } .
(B.2)

• The triple triple intersection numbers in the basis η1 = D5, η2 = D6, η3 = D7,

η4 = D8 are encoded in

I3 = −η3
1 + 18η3

2+8η3
3 + 9η3

4 + 2η2
1η2 + η2

1η4 − 6η1η
2
2

− 2η1η
2
3 + η2

3η4 − 3η1η
2
4 − 3η3η

2
4 + η1η3η4 .

(B.3)

• If one expands the Kähler form in the basis {η1, η2, η3, η4} as

J = t1
[
η1

]
+ t2

[
η2

]
+ t3

[
η3

]
+ t4

[
η4

]
, (B.4)

then the volumes of the basis divisors are

τ1 =
1

2

(
−t21 + 4t1t2 − 6t22 − 2t23 + 2

(
t1 + t3

)
t4 − 3t24

)
,

τ2 =
(
t1 − 3t2

)2
,

τ3 =
1

2

(
−2t1 + 4t3 + 3t4

)(
2t3 − t4

)
,

τ4 =
1

2

(
t1 + t3 − 3t4

)2
.

(B.5)

• The Kähler cone is found by imposing
∫
C J > 0 which gives the following conditions

on the {ti}15

3t2 + t3 − 3t4 > 0 , t1 − 3t2 > 0 , t4 − t3 > 0 , −t1 + 2t2 + t4 > 0 . (B.6)

15We are indebted to Volker Braun for sharing his knowledge and computer program on the computation

of the Kähler cone with us.
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• Using these restrictions, the overall volume is expressed in terms of the four-cycle

volumina as

V =

√
2

45

((
15τ1 + 5τ2 + 3τ3 + 6τ4

)3/2 −
(
3τ3 + τ4

)3/2 − 5√
2

τ
3/2
2 − 5τ

3/2
4

)
. (B.7)

From this we see that by making τ1 large while keeping the others small, we obtain

a swiss-cheese like structure.

• The Euler characteristic χ for the cycle D = mη1 + n η2 + p η3 + q η4 is

χ
(
X ,OD

)
= − 3mn2 +

3

2
q3 + 3n3 − 1

6
m3 +

1

2
p2q + mpq − 3

2
pq2 − mp2

− 3

2
mq2 +

4

3
p3 +

1

2
m2q + m2n − n − 1

3
p − 1

2
q +

13

6
m

(B.8)

where X stands for P[1,1,3,10,15][30]. The interesting combinations for the present

setup are those with χ = 1 and m = 0. Up to wrapping numbers 100, these are

(m, n, p, q) = (0, 0, 0, 1) , (0, 0, 1, 0) , (0, 0, 1, 1) . (B.9)

• It is more convenient to work in a diagonal basis which we define guided by the form

of the volume (B.7)

Da = 15D1 + 5D2 + 3D3 + 6D4 , Db = 3D3 + D4 ,

Dc = D2 , Dd = D4 .
(B.10)

In this basis the total volume reads

V =

√
2

45

(
τ3/2
a − τ

3/2
b − 5√

2
τ3/2
c − 5τ

3/2
d

)
, (B.11)

and the triple intersection numbers again diagonalise

I3 = 225D3
a + 225D3

b + 18D3
c + 9D3

d . (B.12)

• Expanding also the Kähler form in this diagonal basis as J = ta[Da]−tb[Db]−tc[Dc]−
td[Dd], we find that the Kähler cone is defined by

5 tb > td > tc > 0 , ta > tb + 2 tc + td . (B.13)

• We finally present a list of monomials to be counted in order to determine the coho-

mology classes H i(M,L) on the ambient toric variety. We use the shorthand notation

(1, 2, 4, 5, 7, 8|3, 6) for all monomials of the form P (x1,x2,x4,x5,x7,x8)
x3x6Q(x3,x6) and similarly for

the others.
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Cohomology Monomials of degree (m, n, p, q)

H0(M,L) (1, 2, 3, 4, 5, 6, 7, 8|)

H1(M,L) (1, 2, 4, 5, 7, 8|3, 6) (1, 2, 4, 5, 6, 8|3, 7) (1, 2, 3, 4, 5, 7|6, 8)

(1, 2, 4, 5, 8|3, 6, 7) (1, 2, 4, 5, 7|3, 6, 8)

H2(M,L) (3, 4, 5, 6, 8|1, 2, 7) (3, 4, 5, 6, 7|1, 2, 8) (2, 3, 4, 5, 8|1, 6, 7)

(1, 3, 6, 7, 8|2, 4, 5) (1, 2, 6, 7, 8|3, 4, 5) (1, 2, 3, 6, 7|4, 5, 8)

(1, 2, 7, 8|3, 4, 5, 6) (1, 2, 6, 7|3, 4, 5, 8) (2, 3, 4, 5|1, 6, 7, 8)

(2, 4, 5, 8|1, 3, 6, 7) (1, 2, 3, 7|4, 5, 6, 8) (1, 2, 6, 8|3, 4, 5, 7)

(3, 4, 5, 6|1, 2, 7, 8) (3, 4, 5, 8|1, 2, 6, 7) (1, 6, 7, 8|2, 3, 4, 5)

(1, 3, 6, 7|2, 4, 5, 8) (4, 5, 6, 8|1, 2, 3, 7) (3, 4, 5, 7|1, 2, 6, 8)

(1, 2, 7|3, 4, 5, 6, 8) (1, 2, 8|3, 4, 5, 6, 7) (1, 6, 7|2, 3, 4, 5, 8)

(2, 4, 5|1, 3, 6, 7, 8) (3, 4, 5|1, 2, 6, 7, 8) (4, 5, 8|1, 2, 3, 6, 7)

H3(M,L) (3, 6|1, 2, 4, 5, 7, 8) (3, 7|1, 2, 4, 5, 6, 8) (6, 8|1, 2, 3, 4, 5, 7)

(3, 6, 7|1, 2, 4, 5, 8) (3, 6, 8|1, 2, 4, 5, 7)

H4(M,L) (|1, 2, 3, 4, 5, 6, 7, 8)

Table 3: Cohomology groups and corresponding monomials for P[1,1,3,10,15][30].
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